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[1] Two data assimilation (DA) methods, a simple rule-based direct insertion (DI) approach
and a one-dimensional ensemble Kalman filter (EnKF) method, are evaluated by
assimilating snow cover fraction observations into the Community Land surface Model.
The ensemble perturbation needed for the EnKF resulted in negative snowpack biases.
Therefore, a correction is made to the ensemble bias using an approach that constrains the
ensemble forecasts with a single unperturbed deterministic LSM run. This is shown to
improve the final snow state analyses. The EnKF method produces slightly better results in
higher elevation locations, whereas results indicate that the DI method has a performance
advantage in lower elevation regions. In addition, the two DA methods are evaluated in
terms of their overall impacts on the other land surface state variables (e.g., soil moisture)
and fluxes (e.g., latent heat flux). The EnKF method is shown to have less impact overall
than the DI method and causes less distortion of the hydrological budget. However, the land
surface model adjusts more slowly to the smaller EnKF increments, which leads to smaller
but slightly more persistent moisture budget errors than found with the DI updates. The DI
method can remove almost instantly much of the modeled snowpack, but this also allows the
model system to quickly revert to hydrological balance for nonsnowpack conditions.
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1. Introduction

[2] Snow cover fraction (SCF) is one of the key state
variables that can affect much of a land surface model's
(LSM's) geophysical fields and subsequent updates to, for
instance, a coupled atmospheric model [e.g., Jin and Wen,
2012]. Snow cover fraction affects not only surface albedo
and net shortwave radiation but almost all subsequent model
energy and temperature calculations. Despite being such an
important land surface condition, it is parameterized in many
models as a diagnostic variable, derived from snowpack col-
umn state such as snow depth or snow water equivalent
(SWE). Thus, the model's ability to represent snow cover
conditions is dependent on the accuracy of the snowpack
forecasts and the accuracy of the function applied to convert
the snowpack state variables into snow cover estimates. To
improve the LSM's snow cover estimates, data assimilation

(DA) techniques and a substantial record of snow cover ob-
servations can be used. Through assimilation, the combined
model and observations should produce more consistent
and complete results than either individually.
[3] Several different snow cover data assimilation methods

have been developed and applied to LSMs. It is important
to understand how these different methods compare, since
many are being used in different land surface reanalysis pro-
jects [e.g., Rodell et al., 2004], operationally based integrated
snow products [e.g., Carroll et al., 1999], research-grade
short-range weather forecasts [e.g., Drusch et al., 2004], and
long-range based climate reanalyses [e.g., Khan et al., 2008;
Saha et al., 2010]. Currently, snow DA approaches are mostly
applied in off-line simulations but are beginning to be used
more in coupled land-atmosphere simulations [e.g., Jin and
Miller, 2011; Xu and Dirmeyer, 2011; de Rosnay et al.,
2013]. Also, for snow assimilation, most reanalysis and oper-
ational products simply use direct insertion (DI) approaches
[e.g., Rodell et al., 2004; Saha et al., 2010] or other single-
member methods, like optimum interpolation [e.g., Brasnett,
1999; Liston and Hiemstra, 2008] and Cressman analysis
[e.g., Drusch et al., 2004]. More complex assimilation
methods, like Kalman filter (KF)-based approaches, have been
usedmostly in researchmode [e.g., Sun et al., 2004; Slater and
Clark, 2006; Andreadis and Lettenmaier, 2006; De Lannoy
et al., 2012], but much interest in the more complex methods
currently exists from both operational and research centers.
[4] This study's main objective is to evaluate two DA

methods of different complexity and also to examine their
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impact on the model's state and fluxes. Such an evaluation is
important to obtaining an improved snow state analysis, since
snow cover can impact not only albedo and energy fluxes but
the larger global climate system [e.g., Yang et al., 2001; Levis
et al., 2007; Euskirchen et al., 2007] through radiative and
snowmelt-soil moisture connections [e.g., Shinoda, 2001].
Most snow data assimilation studies have examined
assimilating observations on SWE and snow depth esti-
mates [e.g., Andreadis and Lettenmaier, 2006; Slater and
Clark, 2006], while only a few have examined the impacts
on hydrologic and energy fluxes, albeit without much
observational data [e.g., Dong et al., 2007; Zaitchik and
Rodell, 2009, De Lannoy et al., 2012]. In this study, we
examine the impacts of assimilated snow cover observa-
tions on the model's states and fluxes, and how they differ
with regard to the data assimilation method complexity.
[5] In the following sections, two different data assimilation

algorithm types are described and applied: the Rodell and
Houser [2004] (hereinafter RH04) rule-based DI approach
and the ensemble KF (EnKF) [e.g., Reichle et al., 2002a,
2002b]. The DI algorithm is considered a much simpler
approach that does not typically take into account model or
observation uncertainty. For the EnKF algorithm, dynamic
model and observation error structures are predicted and
accounted for by an ensemble of realizations propagated in
time to derive a best analysis estimate. However, the EnKF
approach relies on unbiased Gaussian error distributions, while
in reality most earth system variables are non-Gaussian and
biased. Each approach possesses advantages and disadvan-
tages, which will be addressed in the subsequent sections.

2. Model and Observation Background

2.1. Model Background

[6] The Community Land Model, version 2 (CLM2)
[Bonan et al., 2002; Dai et al., 2003; Oleson et al., 2004]
models heat and moisture states and fluxes for each gridcell
and utilizes plant function types (PFTs) to define vegetation
cover. It uses leaf and stem area indices (LAI and SAI) as
the main time-varying vegetation parameters. The soil column
consists of ten soil layers with the thinnest layers (e.g., layers 1
and 2 thickness equivalent to 7 and 28 mm, respectively) near
the column's top. The water balance equations are mass

conserving. For the atmospheric surface layer, vertical kine-
matic fluxes of momentum and sensible and latent heat are de-
rived using the Monin-Obukhov similarity theory. Bonan
et al. [2002] and Oleson et al. [2004] discuss in further detail
CLM2's governing soil and flux equations.
[7] CLM2's five-layer snow scheme accounts for layer-based

liquid, ice, and heat energy. Snow compaction is accounted
for via melting processes, destructive metamorphism, etc.
[Anderson, 1976]. At each time step, snow layers can vary from
one to five, depending on melting or accumulating conditions
and layer thicknesses [Jordan, 1991; Oleson et al., 2004]. The
snowpack's hydrology incorporates liquid and frozen precipita-
tion, evapotranspiration, and surface and subsurface drainage.
An upper snow accumulation limit is set mainly to 1000 mm,
keeping snow from accumulating unrealistically for coarser
gridcell sizes [Oleson et al., 2004]. Direct and diffuse beam
ground albedos use snow and soil albedo combinations for net
shortwave radiation calculations [Dickinson et al., 1993].
Direct beam and diffuse snow albedos depend on solar zenith
angle, while diffuse also relies on snow aging properties (e.g.,
grain size and soot increases) and new liquid-equivalent snow-
fall of 10 mm [e.g., Dickinson et al., 1993].
[8] In CLM2, snow cover is a diagnostic variable, dependent

mainly on total snow depth (see Figure 1). The snow fraction
value is then used in the ground albedo calculations and subse-
quent energy andmoisture flux predictions. Snow cover fraction
can also be modified when snow-burying effects, like on vege-
tation, are accounted for in the model [Wang and Zeng, 2009].
[9] CLM2 is integrated forward in time on a regular 0.01°

spatial grid using the Land Information System [LIS; Kumar
et al., 2006]. Within LIS, CLM's PFT classification scheme
and parameters are mapped to the University of Maryland
(UMD) classification, as done for the Global Land Data
Assimilation System (GLDAS) [Rodell et al., 2004] and is
implemented in this study. CLM2 is run off line, uncoupled
from an atmospheric model. Though feedbacks between the
land and atmosphere are not present in this mode, an advan-
tage is the ability to constrain and more easily quantify
changes arising from the forcing inputs that drive the model,
as well as any impacts of assimilating observations.
[10] CLM's snow parameterizations have been evaluated at

point-scales [e.g., Feng et al., 2008; Rutter et al., 2009] and
been shown to simulate snow processes relatively well for
different parts of the world [e.g., Dai et al., 2003; Wang and
Zeng, 2009; Rutter et al., 2009]. For this study, some minor
adjustments were made to reduce a snowmelt lag found in
CLM2, which include (1) turning off the vertical vegetation
burying effects (e.g., grassland points cannot be buried by
the modeled snowpack) which do not account for blowing-
snow impacts and cause higher-than-normal surface albedo,
low net shortwave radiation, surface temperatures, and energy
fluxes; (2) increasing the SWE cap of 1000 mm to 1500 mm
for the Washington region where SWE can greatly exceed
1000 mm; and (3) setting the hard-coded 800 mm SWE limit
to the SWE cap to allow the snow to age when SWE exceeds
800 mm. Though the latest CLM version is 4.0, during the
time that this research was conducted CLM2 was the only
version available in LIS. The choice of LIS was made to take
advantage of its existing data assimilation and meteorological
forcing driver options. This work focuses on the role of snow
cover fraction observations and the value they add to LSM
analyses through different data assimilation methods.
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Figure 1. The CLM2 fraction of snow-covered ground as a
function of snow depth.
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2.2. Snow Cover Fraction Observations

[11] Terra's Moderate Resolution Imaging Spectroradiometer
(MODIS) Level 3, Collection 5, 500 m daily snow cover frac-
tion product (MOD10A1) [Salomonson and Appel, 2004] is
used in this study. From their error analysis, Salomonson and
Appel [2004, 2006] estimated a mean absolute error of less than
10% for the snow cover fraction range (0–100%). The SCFmay
be underestimated in dense forests [Salomonson and Appel,
2004] and for patchy snow cover conditions (e.g., <20%)
[Déry et al., 2005]. The daily 500 m sinusoidal projection
products are aggregated to the predefined LIS 0.01° geographic
coordinate system grid, following the approach in De Lannoy
et al. [2012]. Only the Terra MODIS SCF product, which
has about a 10:00 am local overpass time, is used for the data
assimilation experiments.

2.3. Snow Observation Validation Data Sets

[12] The SWE and snow depth validation data sets include
the U.S. Department of Agriculture's (USDA) Natural
Resources Conservation Service (NRCS) SNOTEL [National
Climatic Data Center, 2002] and the National Weather
Service Cooperative Observer Program (COOP) network daily
observations, for the period of March 2000 to September 2010.
The daily SNOTEL SWE data are based on snow pillow mea-
surements at midnight local standard time. The SNOTEL sites
are usually located in higher elevation regions, but this data
set is one of the few available to validate model estimates in

mountainous areas [Pan et al., 2003]. The USDA NRCS per-
forms preliminary data quality assurance checks, but the
data typically require additional screening for outlier
values, as performed for this study [Serreze et al., 1999].
COOP snow depth data include manual daily measure-
ments from weather stations in lower elevation locations.

2.4. Meteorological Forcing and Parameter Data Sets

[13] The meteorological forcing used is the 0.125° resolution
North America Land Data Assimilation System (NLDAS) data
set, which includes model-derived (i.e., Eta-based Data
Assimilation System analyses) and observed precipitation and
downward shortwave radiation products [Cosgrove et al.,
2003]. The blended ground based observation-model precipita-
tion product is used. Within LIS, the NLDAS fields (i.e.,
temperature, specific humidity, downward longwave radiation,
and surface pressure) are downscaled and adjusted to the in situ
SNOTEL and COOP elevation values using the mean environ-
mental lapse rate (6.5 K/km) and the hydrostatic relationship.
The Terra MODIS (collection 4) UMD land cover classifica-
tion product was used [Friedl et al., 2002]. For LAI, monthly
climatologies (based on years 2001–2006) of the Terra
MODIS LAI product were used in the simulations. For
soils, the Pennsylvania State University-USDA State Soil
Geographic Database (STATSGO) soil layered data sets were
included [Miller and White, 1998]. Also, CLM requires a soil
color map [Dickinson et al., 1993; Zeng et al., 2002].

Figure 2. Regional elevation maps of Washington and Colorado domains with a larger Western U.S.
regional view (lower right figure with boxes highlighting the two featured regions). SNOTEL (black trian-
gle) and NWS COOP (gray plus sign) sites are also shown. Source of the elevation maps is the National
Elevation Dataset (NED) for the top two maps, and lower right map source is the GTOPO-1 km.
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2.5. Study Areas

[14] Two regions in Washington (WA) and Colorado (CO)
were selected because they reflect different snow and vegetation
conditions with topographic variability. The areas have lower
left (45.005°N, �121.995°W) and upper right corner (48.995°
N, �116.995°W) bounding coordinates for Washington, and
lower left (37.005° N, �108.995°W) and upper right (40.995°
N,�102.005°W) coordinates for Colorado. Figure 2 highlights
these study areas and each region's SNOTEL and COOP
network sites used in this work. After applying additional
quality-control checks, 56 and 98 SNOTEL stations (black
triangle) are identified as being within the “WA” and “CO”
domains, respectively, and 75 and 152 COOP stations (gray
plus sign) are within the WA and CO domains, respectively.
COOP sites were selected based on how static the site location
was (i.e., not moved more than once in the given 11 years).

3. Data Assimilation Methods and
Experimental Design

3.1. DI Method

[15] For DI, the observations are treated as being perfect, thus
placing most of the weight on the observations. Many snow
cover-based DI studies do produce better analyses than either
the observations and model separately [e.g., Rodell and Houser,
2004; Zaitchik and Rodell, 2009; Tang and Lettenmaier, 2010].
As modeling domains become larger and state vectors include
more variables, the main advantage of the DI methods is that they
are computationally simpler and more efficient.
[16] The rule-based RH04 DI approach applied here is

used in GLDAS [Rodell et al., 2004] reanalysis snow prod-
ucts. Though this algorithm was originally applied for a
coarser scale, it is hypothesized that the rules, which were
designed to limit erroneous observations yet retain enough
useful information for assimilation, may also apply to finer
scales, such as 0.01°. The RH04 DI algorithm includes two
main rules for when a MODIS SCF observation is available
at a station point and at assimilation time for updating the
model's SWE and snow depth (Snod) amounts:

If y f
t ¼ MODIS SCF f

t > 40%; and x f
t ¼ CLM SWE f

t ¼ 0mm; then

xat ¼
SWEa

t

Snodat

" #
¼

5 mm

5 mm=ρsnow;bulk

" #

(1)

where ρsnow,bulk is the CLM2 bulk snow density with a value
of 250 kg/m3. The 5 mm of SWE and 0.02 m of snow depth
values are used to initiate snowpack growth.

If y f
t ¼ MODIS SCF f

t > 10%; and x f
t ¼ CLM SWE f

t ¼ 0mm; then

x
t
a ¼

SWEa
t

Snodat

" #
¼

0 mm

0 m

" # (2)

where SWE and snow depth are reduced to 0 mm, when a
MODIS SCF value indicates very little to no snow presence.
If neither condition is satisfied, then no update to the model
occurs. If the gridcell's cloud cover is greater than 50%, then
the gridcell is treated as cloud covered and no update occurs.
This applies to both data assimilation methods. The constant
bulk snow density value of 250 kg/m3 is used even though it
does not capture low densities of “fresh” snow or high densities

associated with older or melting snow. When an assimilation
update occurs for the two total column snowpack state variables
(SWE and Snod), the information is then propagated to each
individual snow layer variable (liquid content from SWE and
depth of each layer from snow depth). Then through physical
process routines similar to those in CLM2, the layered state var-
iables are further updated through snow compaction, combina-
tion and division of snow layers to make the analysis physically
consistent. This is done the same for the DI and EnKFmethods.

3.2. 1-D EnKF

[17] The EnKF applies Monte-Carlo type simulations to the
KF, allowing randomly generated error samples to represent
the model and observational uncertainties [e.g., Evensen,
1994]. Onemajor assumption is that the perturbed forecast dis-
tribution is Gaussian and unbiased. However, these conditions
are often not met and leave the filter operation suboptimal.
[18] The EnKF method applied in LIS [e.g., Kumar et al.,

2008] adheres to the works of Reichle et al. [2002a, 2002b]
and Reichle et al. [2009]. When observations become avail-
able, the assimilation update step is initiated by estimating
the model analysis, which reflects model forecast inputs,
observational inputs, and error covariance matrices. The
analysis equation is expressed as:

xat;i ¼ x f
t;i

� �
þ Kt y o

t;i � ht x f
t;i

� �h i
(3)

where xat,i represents the analysis estimate for ensemble mem-
ber, i, and Kt is the Kalman gain matrix. The vector function,
ht(∙), known as the observation operator, transforms the fore-
cast state vector, xft,i, into a predicted observation vector, yft,i,
equivalent to the actual observation set, yot,i. Here, the observa-
tion set is perturbed (for each ensemble member, i), assuming
a normal distribution with a mean of 0 and a standard devia-
tion, σ, as described below.
[19] Since the observation type being assimilated is

MODIS SCF measurements, the observation operator used
is the CLM2 snow cover fraction formulation [e.g., Oleson
et al., 2004]:

scf ft;i ¼ y f
t;i ¼ ht x f

t;i

� �
¼ snod f

t;i

0:1þ snod f
t;i

" #
(4)

which uses the snow depth forecast, snodft,i, to generate a pre-
dicted SCF observation, represented by scf ft,i. This observa-
tion operator is also called a snow depletion curve (SDC)
and is shown in Figure 1. Finally, the weighted covariance
matrix term required in updating the analysis is the Kalman
gain matrix, Kt, which is solved as

Kt ¼ Cov xt; y
f
t

� �
� Cov y f

t ; y
f
t

� �
þ σ2obs

h i
: (5)

[20] The σobs2 is the scalar observation error variance, and
Cov() refers to error covariance matrices. The model state vec-
tor contains the two total column snowpack variables, SWE
and snow depth, and the observation set contains only the
one element of SCF.
[21] Here, the model and observational information are

mapped 1:1 spatially where satellite observation data points
correspond to a single model gridcell. This is considered a
one-dimensional (1-D) EnKF method and is used in this
study. More recent studies have begun to account for spatial
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uncertainty effects, like spatial-length error characteristics,
using more sophisticated EnKF approaches such as 3-D
filters [e.g., De Lannoy et al., 2010]. Forecast ensembles
are generated by perturbing select atmospheric forcing fields
and snow variables using a random field generator, which
also cross correlates the perturbed atmospheric fields and
selects model states to account for cross-correlated errors
within the forcing fields and states [e.g., Reichle et al.,
2002a; De Lannoy et al., 2012]. Additive perturbations are
applied to temperature and downward longwave radiation
to have zero means, and multiplicative perturbation ensemble
means are scaled to 1 for precipitation, downward shortwave
radiation, and the SWE and snow depth variables.
[22] For the DI and EnKF experiments, a baseline

(unperturbed deterministic) and ensemble, or open-loop (OL),
experiments were conducted, respectively. For the OL and
EnKF runs, 12-member ensembles were employed and assumed
to obtain sufficient spread for the state variables. The perturba-
tion settings are adapted from De Lannoy et al. [2012], though
they tuned the perturbations settings for the Noah LSM snow-
pack state. Through additional tests, it was found that these
perturbations are sufficient for our experiments with CLM2.

3.3. Experiment Background and Setup

[23] For the assimilation experiments, only Terra MODIS
SCF observations are assimilated at 1800UTC (or 10:00 am
Pacific Standard Time) for WA and at 1700UTC (10:00 am
Mountain Standard Time; MST) for CO. Experiments are
validated with SNOTEL observations at 0800UTC, reflecting

local midnight, and COOP observations when recorded by
observers. Some of the validation statistics include temporal
and spatial (i.e., station) averages, along with standard devia-
tions and root mean squared errors (RMSE) to estimate the
dispersion in the evaluated data and overall errors of the model
state updates. To test a range of observation and DA method
capabilities, two time periods are selected that encompass
normal, negative, and positive snowpack anomalies. A rank
analysis on the in situ snow observations for Water Years
(WYs) 2000–2010 was performed to locate two experiment
years that captured a range of snowpack conditions. A WY
begins on 1 October and ends 30 September. One overlapping
“normal” snow year for both regions isWY2004. For a negative
snowpack anomaly year (or a “drought” year), the WA domain
experienced this case in WY2005. This happens to coincide
with a significant positive snowpack anomaly in CO. Thus,
WYs 2004–2005 are used for the remaining experiments. All
model experiments include a spin-up time period from 3
September 1996 to 30 September 2003, using a 1 h time step.

3.4. Ensemble Bias Correction

[24] One key feature that emerged in the CLM2 ensemble
evaluations is a consistent underestimation of the ensemble
mean SWE and snow depth with respect to the single
deterministic run, as shown in Figure 3. This indicates that
bias may be resulting from the ensemble generation, which
will likely reduce the optimality of the DA filter. A first cause
of biases is in the nonlinearity of the snow model (e.g.
processes like snow aging, compaction, etc.). Furthermore,

Figure 3. Spatial averages of SWE (mm) for the baseline run (thick gray line), the biased ensemble mean
(thick red line), and bias-corrected ensemble mean (thick green line, overlaying the thick gray line) for both
(a) WA and (b) CO. The dashed lines indicate ensemble maximums and minimums, representing ensemble
spread for the biased (red-dashed lines) and bias-corrected runs (green-dashed lines). The thickness of the
gray line is greater than the green line only to show the overlap of the bias-corrected ensemble mean.
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precipitation, downward shortwave radiation and the two
snow state variables are found to be biased, when applying
the lognormally distributed multiplication factors [based on
Reichle et al., 2002a, 2002b]. When upper value limits and
maximum standard deviation limits are imposed on these vari-
ables, they cap or scale back high or unreasonable perturbed
values that otherwise ensure a mean of 1 for lognormal distri-
butions. The imposed limits on precipitation and the two snow
state variables contribute to the underestimated ensemble
means. The imposed limits on precipitation and the two snow
state variables contribute to the underestimated ensemble
means. However, these limits remain in place to constrain
any extreme values. Others have reported ensemble biases
using normal additive perturbation values even with sufficient
ensemble sizes [e.g., Reichle et al., 2007; Ryu et al., 2009].
[25] To best compare the EnKF method with the described

DI method, a correction must be made to the ensemble bias.
This bias, as shown in Figure 3, is corrected using the method
outlined in Ryu et al. [2009]. To fully implement their bias-
correction method, ensembles are still propagated and
updated as normal. However, one additional unperturbed,
single-member forecast is also updated during the assimila-
tion step with an unperturbed SCF observation value. This
is to maintain consistency with the analysis update to the
perturbed snow variables. Ryu et al. [2009] only applied their
ensemble bias correction to soil moisture layer state vari-
ables; here their equations (4) and (5) are also applied to
the biased precipitation and downward shortwave radiation
ensembles prior to any model or assimilation update steps.
[26] To show that this bias correction works, Figure 3 shows

the original baseline, the underestimated or biased ensemble
mean, and bias-corrected ensemble runs for both a) WA and
b) CO, respectively. These SWE time series show the spatial av-
erages over all SNOTEL-equivalent points for WA and CO.
Both SWE and snow depth (not shown) have biases minimized
in comparison to the baseline run. As further proof that the
method works, ensemble minimum and maximum values are
plotted (dashed lines), displaying the conserved spread for the
two OL simulations. This simple scheme may correct for en-
semble perturbation bias, but it does not truly account for other
known biases in the model or observations, which require other
bias mitigation approaches [e.g., Reichle and Koster, 2004].

3.5. EnKF Observation Error Estimation

[27] In many EnKF approaches, the observations are treated
as random variables and perturbed similarly to the model states
to ensure that filter performance does not degrade [Houtekamer
andMitchell, 1998; Burgers et al., 1998]. For the MODIS SCF
observational error (σobs, with a unit of percentage), previous
studies assigned a 10% SCF standard deviation value, which

Andreadis and Lettenmaier [2006] and Su et al. [2008]
selected, based on Maurer et al. [2003], to reflect MODIS
SCF observation detection errors. To show what happens
if only this 10% observation error is accounted for, a set of
experiments were conducted and evaluated in section 4.
[28] In this study, MODIS SCF errors (σobs) are estimated

for our particular study domains by comparing MODIS SCF
observations with in situ snowpack observations (e.g.,
SNOTEL SWE) converted into SCF validation “truth” using
the SDC-based observation operator (see Figure 1). More spe-
cifically, the observation error (σobs) is expressed in terms of
RMSE between MODIS SCF and in situ SCF. Nonzero snow
observation values from WYs 2000–2003 and 2006–2010 are
only used, since WYs 2004–2005 are used for the DA experi-
ment and validation period. To calculate the SNOTEL-SCF
values, SNOTEL SWE is converted to snow depth using the
CLM SDC and a bulk snow density of 250 kg/m3, which both
might add some error to the observation error estimate.
Furthermore, the observation error estimates represent not only
MODIS SCF detection uncertainty but also representativeness
errors (e.g., estimating ~1 km-based MODIS SCF errors using
point-based SNOTEL/COOP data, SNOTEL site not represen-
tative of the local area, etc.). These final observation errors are
estimated for each region and observation network, separately
and combined, and presented in Table 1. As shown in
Table 1, most of the total observational error estimates may
be near 30–35%, capturing both measurement and representa-
tiveness errors in the observations. The higher errors
found for WA (e.g., 35.17%) may relate to denser forest cover
(e.g., Hall et al. [1998]) and slope-induced shadow effects on
morning retrievals (e.g., Notarnicola et al. [2013]), which can
result in underestimated SCF estimates. Monthly based errors
were also examined wherewintertime errors tended to be lower
(e.g., 21% for CO) versus much higher springtime errors (e.g.,
30% for CO) when compared to the annual errors. To examine
the impact of the static annual errors, they are applied in subse-
quent EnKF experiments and presented in section 4.

4. Results

4.1. Data Assimilation Method Comparison

[29] In this section, the results of the RH04 DI and EnKF
experiments are evaluated in how their snowpack state
variables, SWE and snow depth, are updated. For an initial
comparison, the single-member deterministic run, the biased
ensemble OL, RH04 DI and biased EnKF experiments are
compared with the SNOTEL SWE and COOP snow depth
observations for both CO and WA regions. The purpose of
including the biased OL and EnKF experiments is to illustrate
the impact of bias introduced through commonly used pertur-
bation methods [Reichle et al., 2002a, 2002b], as currently
often used in several applications [e.g., Kumar et al., 2008;
De Lannoy et al., 2012]. First, spatial snowpack averages are
calculated across all station (and model) points at each obser-
vation time for the two WYs, 2004–2005. For the EnKF
experiments, the combined observational error, σobs, values
from Table 1 are applied as 30.64% for CO and 35.75% for
WA. Figure 4 displays time series of the spatial averages for
the four cases: CO domain a) SNOTEL and b) COOP sites,
and WA domain c) SNOTEL and d) COOP sites. SNOTEL-
based observations include SWE (in mm), and COOP includes
snow depth (converted to mm).

Table 1. Observation Error, σobs,, for SCF (Expressed as a RMSE)
in % Snow Cover

Observation Error (RMSE)

Case Stations σobs (%)

SNOTEL-CO 98 25.36
SNOTEL-WA 54 35.17
COOP-CO 152 34.04
COOP-WA 75 36.17
CO-combined 250 30.64
WA-combined 129 35.75
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[30] For almost all cases, the averaged sites indicate that
CLM2 produces late spring snowpack melt-offs in compari-
son to the observations, except for the WA-COOP case. For
the two SNOTEL cases (CO and WA), CLM2 shows a
significant lag in the late spring snow accumulation and
melt-off, partly due to a springtime cold bias in the NLDAS
forcing [see Cosgrove et al., 2003]. As introduced in

section 3.4, all OL experiment cases show underestimated
peak snowpack in comparison to the deterministic CLM2
experiments, confirming the ensemble bias presence,
especially for the deeper snowpack cases. For the two DA
experiments, the RH04 DI and EnKF show similar time se-
ries patterns, and the assimilation of the MODIS SCF obser-
vations does reveal improved timing of snowmelt relative to

Table 2. Spatial Averages of Temporally Based Summary Statistics for CLM2 Baseline, Open-Loop (OL), DI, and EnKF DA Experiments
for Combined WYs 2004–2005 a

DA Comparison

RMSE Units: mm

EnKF Biased EnKF Unbiased

SNOTEL-CO Baseline OL biased OL unbiased DI-RH04 10% σobs Combined σobs Combined σobs
RMSE 136.46 136.26 136.20 133.59 159.50 129.00 123.47
Correl 0.58 0.60 0.58 0.76 0.74 0.81 0.80

SNOTEL-WA
RMSE 151.12 148.09 150.87 165.07 193.11 137.48 135.04
Correl 0.76 0.78 0.77 0.73 0.65 0.85 0.84

COOP-CO
RMSE 132.55 122.33 132.05 94.59 116.89 106.20 112.21
Correl 0.48 0.49 0.48 0.58 0.49 0.52 0.52

COOP-WA
RMSE 105.37 102.82 103.67 91.72 100.41 99.21 100.73
Correl 0.60 0.60 0.60 0.66 0.64 0.62 0.62

aSNOTEL sites are evaluated in terms of SWE, and snow depth for COOP. Statistics associated with SNOTEL sites encompass months December–May,
while those with COOP sites include months, December–March. Bold-italicized values indicate best results for each region and year.

Figure 4. Time series of snow observation and model point spatial averages are compared for the four
cases: CO domain (a) SNOTEL and (b) COOP sites, and WA domain (c) SNOTEL and (d) COOP sites.
SNOTEL-based observations include SWE (in mm) and COOP-based observations include snow depth
converted to mm (blue lines). Black and gray lines indicate the single-member baseline CLM2 runs and
12-member CLM2 open-loop (OL) runs, respectively. The RH04 DI (red) and EnKF (with biased ensem-
bles and combined total observation standard errors, in green) methods are also shown in this comparison.
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the OL and baseline. For the CO cases, the RH04 DI method
produces a slightly better agreement with the snow observa-
tions than the EnKF method. However, the opposite occurs
for the WA cases. Also, in the WA cases, the DI method
removes the snowpack too early due to MODIS SCF detec-
tion underestimation in denser forests areas, especially in
spring months [e.g., Hall et al., 1998; Liu et al., 2008].
[31] To compare how these experiments differ overall, the

experiments are evaluated in terms of their RMSE and tempo-
ral correlation coefficients (correl), averaged over all stations
within a network for WYs 2004–2005, and summarized in
Table 2. The statistics associated with SNOTEL sites include
the months of December to May, and COOP sites include
months December to March. The reason for the shorter
COOP period is that these sites tend to be in lower elevation
locations where the snowpack has typically melted by the end
of March. As found in Table 2, SNOTEL points tend to have
the lowest errors (123 and 135 mm, for CO and WA,
respectively) and highest correlation values (0.80 and 0.84,
respectively) associated with the EnKF analysis, specifically
the unbiased ensemble-based experiments (except correlation
values go down slightly). The errors are reduced by 10%, but
remain substantial because of the unavoidable spatial discrep-
ancy in the point to gridcell comparison. The correlation values
show significant improvements through data assimilation,
especially for the CO-SNOTEL case which shows statistically
significant differences at the 99% (95%) level for EnKF (DI)
experiments versus the OL (baseline) run. As for COOP points,
the DI-based analysis tend to follow the COOP snow depth
time series pattern more closely (see Figure 4), and for CO,
the DI analyses have smaller differences with the observations
than the other experiments for that case. Improvements over the
OL experiments occur for almost all cases when MODIS SCF
is assimilated.

4.2. Ensemble Bias Reduction Impact

[32] Many ensemble-based DA studies have addressed
different bias issues in terms of filter performance, including
observation and model biases, and also parameter and
forcing biases [e.g., Dee and da Silva, 1998; Reichle and
Koster, 2004; Bosilovich et al., 2007; De Lannoy et al.,
2007; Pauwels et al., 2013]. To best compare the DI RH04
and EnKF methods, the bias in the ensembles should be
addressed. In this section, the OL ensemble mean bias is
corrected, using the Ryu et al. [2009] approach (as described
in section 3.4) to explore how such errors are propagated to
the model forecasts and the analysis estimates. Summary
statistics are presented in Table 2 and indicate very small
differences between the baseline and OL, biased and unbi-
ased simulations. Since the summary statistics do not specify
where any significant differences occur between the OL and
EnKF experiments, another type of metric is applied.
[33] For the climate and hydrologic applications, it is

important to know when the snowpack completely melts.
Such a measure is derived and utilized to see what, if any,
impact the bias and the bias correction have relative to the
SNOTEL and COOP observations. This snowmelt metric,
referred to here as the final day of melt (“FDM”), reflects
the day of the WY when the snowpack first melts totally
after peak snowpack conditions. To see how the OL and
EnKF experiments compare with the snow observations,
differences are taken between the model's and observations'
snowmelt metric and then spatially averaged over all avail-
able points for each case and year. The final results are
presented in Figure 5. For the average in FDM differences
(i.e., FDMCLM2 � FDMOBS), the greatest difference in actual
days occurs between the OL runs and snow observations,
which is expected due to the model snowmelt lag bias.
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Figure 5. Average differences between CLM2 and snow observation snowmelt metrics are compared for
the bias and bias-corrected OL and EnKF experiments for all four cases. The snowmelt metric applied is
defined as the “final day of melt” (FDM), identified as the day-number (starting from 1 Oct.) when the
snowpack first melts off.
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There are noticeable reductions in days between the biased
and unbiased OL experiments with the bias-corrected ensem-
ble experiments showing closer agreement with the observa-
tions, except for the WA-SNOTEL, WY2005 case. These
reductions translate to better agreement within the EnKF
experiments, especially for SNOTEL-based cases. These
small improvements in timing relate to reducing the winter-
time “undercatch” conditions due to underestimated precipi-
tation ensemble biases (especially at SNOTEL locations) and
reducing negatively biased downward shortwave radiation
fluxes in springtime, which again are perturbed with the
lognormally distributed factors. Thus, bias correcting the
ensembles does consistently benefit the snowpack analysis
in this way. Therefore, the ensemble bias-correction scheme
is applied for all subsequent evaluations.
[34] With the ensemble bias correction applied, the DI and

EnKF experiments are evaluated against the observations
again but in terms of change relative to their respective control
runs. This evaluation is presented by normalizing the SWE (or
snow depth) RMSE values of each experiment with the SWE
(or snow depth) RMSE values of the CLM2 baseline and
unbiased OL runs. A normalized RMSE value less than one
indicates that an experiment performs better than its control
run [e.g., Crow and Ryu, 2009]. Figure 6 shows how the rela-
tive RMSE values compare for DI and unbiased EnKF
methods normalized by their respective control runs for all
cases. The EnKF experiments appear to have overall smaller
spatial standard deviation and minimum/maximum ranges
than the DI experiments, indicating that the DI experiments
show more wide-varying impacts on the analyses at both

SNOTEL and COOP sites. Such impacts could translate to
greater errors in subsequent processes, like streamflow condi-
tions. For SNOTEL sites, like Figure 6a (CO domain) and 6c
(WA domain), the EnKF method has slightly improved mean
conditions versus the OL and DI runs, especially for the WA
domain. At the lower elevation COOP points, the DI experi-
ments perform slightly better than the baseline runs and the
EnKF experiments, as shown before. One reason why the DI
method performs better at lower elevation sites is that it
removes more effectively the persistently biased CLM2 snow-
pack lag than the EnKF method at sites where smaller snow-
packs typically melt off by March. For higher elevation
SNOTEL sites, the DI method removes the snow too early at
several sites, whereas the EnKF method more gradually
reduces the overall snowpack, improving the timing of snow
melt-off with respect to the observations.
[35] To show how these normalized values at the different

sites vary with elevation, scatterplots of the four cases are
shown in Figure 7 and only for the more normal snow year,
WY2004. Somewhat weak relationships are shown between
the normalized RMSE values and elevation. For CO, normal-
ized RMSE values slightly increase (decrease) with an
increase in elevation at SNOTEL (COOP) points. For WA,
the relationships are even weaker. For WY2005 (not shown),
similarly weak relationships also exist, except the DI-based
normalized RMSE values decrease with elevation for the
CO-COOP case.
[36] In these DA method comparisons, the EnKF experi-

ments were conducted with the combined σobs values,
30.64% and 35.75%, for CO and WA, respectively. These

Figure 6. DA experiment RMSE values normalized by respective baseline or open-loop RMSE values
for the CO domain (a) SNOTEL and (b) COOP cases, and WA domain (c) SNOTEL and (d) COOP cases.
Black triangles indicate the statistical mean, gray bar lines indicate ±1 stdev unit frommean, and black error
bar lines indicate the maximum and minimum extents of the normalized statistic. Values below 1 suggest
improvement over the control runs.
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values could be optimized to account for variation in year,
elevation, vegetation type, etc.
[37] Additional CO domain experiments were performed by

applying the SNOTEL-CO and COOP-CO-based observation
error values (25.36% and 34.04%, respectively) from
Table 1. Applying the SNOTEL-only σobs value produces
slightly greater standard deviation and min/max ranges versus
the COOP-only estimates (not shown). Again, this may relate
to having the analysis depend more on the observational infor-
mation and remove too much modeled snowpack. This is in-
deed the case for the EnKF experiment performed with the
10% detection error (summary statistics are reported in
Table 2). Accounting for MODIS detection errors only
degrades the EnKF algorithm by making it depend too much
on the snow cover observation information and not the
model forecast.

4.3. Impacts on the Hydrological and Energy Budgets
and Fluxes

[38] The final objective is to show how assimilating snow
cover fraction observations impacts the model's energy and
water budgets. This is important since LSMs like CLM2 are
typically coupled to numerical weather prediction, global cli-
mate, or streamflow models and can often control much of
the surface radiative and energy flux conditions. To see how
the different DA updates impact the LSM's surface budgets,
the other LSM state variables (e.g., soil moisture) and fluxes
(e.g., turbulent energy) are evaluated in terms of total impacts
for a snowmelt period. Each DA experiment is evaluated qual-
itatively relative to its control run, similar toDong et al. [2007]
and Zaitchik and Rodell [2009]. For the DI experiments, the
CLM2 baseline serves as the control run. For the EnKF exper-
iments, the bias-corrected OL run serves as its control.

[39] For this evaluation, the snowmelt period from 1 March
to 31 August 2004 is examined, which corresponds to an aver-
age snow year out of the 11 year period (2000–2010). Restart
files (for 1 March 2004) from each experiment were used to
initialize each model run. The model state and fluxes com-
pared include: net shortwave (SWnet) and longwave (LWnet)
radiation (Wm�2); latent (LHFlux), sensible (SHFlux), and
ground (GHFlux) heat fluxes (Wm�2); total average surface
temperature (SurfTemp; K); total column soil wetness
(SoilWet; vol/vol %), surface (SurfRunoff) and subsurface
(Subsurface) runoff (mm/day); snowmelt (Snowmelt; mm/
day); and total evapotranspiration (Total Evap; mm/day).
[40] The energy budget can be written as follows:

SWnetþ LWnet–LHFlux–SHFlux–GHFlux (6)

where this expression equals zero in a perfectly balanced sys-
tem. Deviations from zero can be expected when the fluxes are
reacting to assimilation increments in select state variables. To
see how energy fluxes, LHFlux and SHFlux, are impacted by
the two DA methods, Figure 8 highlights the total (spatial)
averages of the absolute differences between the combined
daily averaged fluxes for each experiment and those of the
control runs. The ground heat fluxes (not shown) almost
mirror the combined LHFlux and SHFlux, indicating how
the residual energy fluxes are balanced. The DI experiments'
turbulent flux differences are slightly larger than the EnKF
differences with its control run. This may suggest that the earlier
reductions in the DI experiment's snowpack (as shown in
Figure 4) contribute to higher combined flux values than those
of the EnKF simulations. For the EnKF experiment, the smaller
increments associated with the SCF updates can translate to re-
duced differences in energy fluxes relative to the control run,

Figure 7. Scatterplots are shown between elevation (unit: meters) and the DI (open squares) and EnKF
(“x” symbols) experiment RMSE values normalized by their respective baseline or open-loop RMSE
values for the CO domain (a) SNOTEL and (b) COOP cases, and WA domain (c) SNOTEL and (d)
COOP cases. WY2004 values are only shown.
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which could ultimately result in a smaller impact on the energy
fluxes being communicated to an atmospheric model.
[41] An additional way to consider which experiment may

impose less impact on subsequent states and fluxes is to cal-
culate a total average of absolute differences between the ex-
periment's and the control's variable of interest (e.g., latent
heat flux). Table 3 provides estimates of the temporal aver-
ages of absolute differences made between each experiment
and its control for 1 March to 31 August 2004, at each
gridcell point then averaged over the region. In comparing
the RH04 DI and the bias-corrected EnKF runs, larger differ-
ences are found in the DI run relative to its control than those
between the EnKF and its control run. The differences are
greatest for the higher elevation-based SNOTEL cases,

especially WA sites, where the DI method removes greater
amounts of SWE and sometimes earlier in the snowmelt
period. However, none of the differences between the exper-
iments and their respective control runs are statistically
significant, nor are the differences between the DI and
EnKF experiments. The averaged differences appear to be
small for both DA-based experiments, but if the total
summed differences are examined for the six-month period,
the accumulated impacts are more apparent.
[42] A few studies have quantified the impacts of snow

data assimilation on hydrological variables [Zaitchik and
Rodell, 2009; De Lannoy et al., 2012], or more specifically
in terms of just runoff and streamflow [e.g., Liston et al.,

Figure 8. Absolute differences between the sum of latent and sensible heat fluxes from the RH04-DI
experiment and the CLM2 baseline run (black line), and the bias-corrected EnKF run and its OL run
(gray-dashed line), for CO domain (a) SNOTEL and (b) COOP sites, and WA domain (c) SNOTEL and
(d) COOP sites. Time series represent spatial and daily averages of the differences with units of W m�2.

Table 3. Comparison of Total Daily Averages of Absolute Differences Between Experiment and Control Run Values a

DA Impacts on Energy Fluxes (1 Mar. –30 Aug. 2004)

SWnet LWnet LHFlux SHFlux SHFlux SurfTemp EngBudget

SNOTEL-CO (W m�2) (W m�2) (W m�2) (W m�2) (K) (W m�2)
DI-RH04 0.28 1.50 2.81 2.81 0.30 0.00
EnKF 0.20 1.05 2.03 2.02 0.22 0.00
SNOTEL-WA
DI-RH04 0.07 1.81 3.10 4.46 0.38 0.00
EnKF 0.05 1.23 2.16 3.05 0.26 0.00
COOP-CO
DI-RH04 0.39 0.66 0.89 0.92 0.11 0.00
EnKF 0.25 0.41 0.64 0.63 0.07 0.00
COOP-WA
DI-RH04 0.13 0.25 0.25 0.33 0.03 0.00
EnKF 0.07 0.15 0.14 0.17 0.02 0.00

aSWnet, LWnet, LHFlux, SHFlux, SurfTemp, and energy budget (EngBudget) terms presented as spatiotemporal (daily) averages of absolute differences
between experiment and control for the period: 1 Mar.–31 Aug. 2004.
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1999; Dressler et al., 2006]. Here, the CLM2 moisture mass
budget is expressed at each time step, Δt, as:

ΔTotalSM þ ΔSWE þ ΔCanopyWater
� TotalPPT � TotalRunoff � TotalEvapð Þ*Δt (7)

where this expression equals zero in a perfectly balanced
system. Deviations from zero are expected when assimilation

increments are included in the ΔSWE term. ΔTotalSM is the
change in total column soil moisture storage, and ΔSWE and
ΔCanopyWater represent the changes in snowpack and canopy
water storage, respectively. TotalPPT represents combined
snowfall and rainfall quantities, TotalRunoff reflects surface
and subsurface flow (including snowmelt), and TotalEvap
includes all vegetation, ground, and snow evaporative (and

Figure 9. Daily hydrologic budget error averages are shown (on the left) for all analyzed sites in (a) CO and
(d) WA for the CLM2 baseline run (black line), the RH04 DI experiment (dark gray line with pluses), and the
bias-corrected EnKF experiment (light gray line with open circles) for 1 March to 30 June 2004 only. On the
right-hand side, (b and e) monthly averages of the hydrological budget errors, outside the error range of ±3mm/
day, and (c and f) the corresponding percentage of points outside this range are presented for CO and WA.

Figure 10. Autocorrelation time series of the (unbiased) EnKF experiments' SWE increments for both
CO (black line with open circles) and WA (gray line with closed circles) regions, including the two spring
seasons of 2004 and 2005. Also, fitted correlation length functions are overlaid for both regions. The time
series reflect spatial averages across available stations at each time lag.
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sublimation) processes. For the following discussion, equation
(7) is evaluated for the different experiments.
[43] To show the DAmethod impacts on the hydrologic bud-

gets, Figure 9 compares the sum in equation (7) for the CLM2
baseline run, the RH04-DI, and the bias-corrected EnKF

experiments, highlighting the combined (both SNOTEL and
COOP) for CO (Figure 9a) and WA (Figure 9d) domains. By
design, the CLM2 baseline run's moisture mass budget (black
line) closes (~0 mm/day) at each daily averaged time point.
For the RH04 DI experiment, evidence of the sudden SWE

Figure 11. Similar description to Figure 8 but for snowmelt differences (mm/day) and for SNOTEL-only
(a) CO and (b) WA sites.

Table 4. Description Similar to That of Table 3 but for Moisture Budget States and Fluxes a

DA Impacts on Moisture Fluxes (1 Mar.–30 Aug. 2004)

SoilWet SurfRunoff Subsurface Snowmelt TotalEvap HydroBudget

SNOTEL-CO (%) (mm) (mm) (mm) (mm) (mm)

DI-RH04 2.37 1.15 1.05 2.23 0.10 1.81
EnKF 1.44 0.83 0.78 1.60 0.07 1.84
SNOTEL-WA

DI-RH04 1.66 1.17 1.69 2.86 0.11 2.47
EnKF 0.97 0.86 1.11 1.91 0.07 2.31
COOP-CO

DI-RH04 1.12 0.34 0.24 0.54 0.03 0.34
EnKF 0.56 0.26 0.16 0.37 0.02 0.39
COOP-WA

DI-RH04 0.20 0.12 0.08 0.18 0.01 0.08
EnKF 0.11 0.07 0.04 0.09 0.00 0.10

aSoilWet, SurfRunoff, Subsurface, Snowmelt, Total Evap, and hydrological budget (HydroBudget) terms reflect spatiotemporal (daily) averages of abso-
lute differences between experiment and control for the period: 1 Mar.–31 Aug. 2004. Bold-italicized values indicate statistical significance at the 95% level.
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removals is revealed in the moisture budget as extreme negative
values. These large negative values represent the amount of wa-
ter mass removed from the system during an assimilation step,
and they occur mostly in April to May, as indicated previously
in Figure 4. For the EnKF experiment, substantial moisture im-
balances can also occur (e.g., Figure 9a) but typically with par-
tial snow removals at each update instead of complete
removal, like the DI method, leaving some of the snowpack
present. With these smaller increments and snow conditions
present, the EnKF experiments tend to have slightly more ac-
cumulated moisture budget imbalances over time, despite both
DA methods assimilating the same set of observations. This
difference between the DA methods is highlighted in
Figures 9b and 9c for CO and 9e and 9f for WA domains,
where errors exceeding ±3 mm/day are averaged and counted
per month (March to June). Figures 9c and 9f show the higher
monthly frequencies in EnKF moisture mass budget errors
than the DI method.
[44] For the DI method, instantaneously removing much of

the modeled snowpack reverts the LSM system back to
the hydrological budget of its nonsnowpack conditions
and related physics, contributing to fewer hydrological
budget errors in time and possibly being a benefit to some
reanalysis data sets [e.g., Rodell et al., 2004; Saha et al.,
2010]. For the EnKF method, these higher frequencies relate
to the fact that SWE and snow depth reflect accumulated
variables which have inherently high temporal correlations
and lead to a suboptimal KF operation. Figure 10 shows this
serial dependence through the autocorrelation (spatially
averaged at daily lags) of the EnKF experiments' SWE
increments over the spring months of 2004 and 2005, for
both CO and WA. An optimal filter would show mostly
white-noise correlations, whereas here a 5–8 day autocorrela-
tion is found. This is a known problem which some snow DA
studies have addressed [e.g., Slater and Clark, 2006], and it
should be accounted for in future studies.
[45] For the model time step after the assimilation update,

the other model variables and fluxes then adjust to the
remaining SWE left in the system to obtain moisture mass bal-
ance. This is evident in Figure 11 which shows the differences
in snowmelt (mm/day) between the DI experiment and its con-
trol and the EnKF experiment and its control run for all cases,
though only the SNOTEL cases are shown. The large negative
differences reflect the snowpack removed but not melted. This
translates into decreased runoff processes for both DA experi-
ments. The DI approach of Zaitchik and Rodell [2009] adjusts
the forcing inputs, based upon MODIS SCF estimates, to
update the model snow states. With that, they were able to
maintain better hydrologic budget closure at each time step.
[46] Similar to Table 3, total averaged absolute differences

in relevant moisture fluxes and total soil column wetness
variables are provided in Table 4, reflecting the same
snowmelt period. The averaged hydrological budget errors
(HydroBudget) shown in Table 4 indicate that both methods
accumulate a similar amount of budget errors, but with the
EnKF resulting in slightly higher moisture budget errors (as
explained by the higher error frequency, see Figure 9), except
for the SNOTEL-WA EnKF case which has overall lower
errors (i.e., 0.16 mm/day less). In terms of statistical signifi-
cance, the WA-SNOTEL and both CO cases have significant
differences between each experiment (both DI and EnKF)
and its control run for snowmelt at least at the 95% level.

This is also true for the surface and subsurface runoff terms
for the CO-SNOTEL DI and EnKF experiments and the
WA-SNOTEL DI experiment, indicating that the DI experi-
ments can significantly impact the model and even subse-
quent streamflow estimates. If the absolute differences
between each experiment and its control were summed for
this six-month period, the total amount of water removed
from the system can be substantial. For example, the summed
total runoff difference (in mm) for all WA station points for
the DI experiment is:

236:67 SurfRunoffð Þþ324:83 Subsurfaceð Þ¼561:50 Total Runoffð Þ:

[47] For the bias-corrected EnKF experiment, the result is:

171:35 SurfRunoffð Þþ211:09 Subsurfaceð Þ¼382:43 Total Runoffð Þ;
representing 179.07 mm less of total runoff for the six-month
period in comparison to the DI experiment. This comparison
indicates how much the DA method selected can affect
snowmelt and thus total runoff, and effectively how much
water mass was removed and unaccounted for in the system.
One other notable difference is with the higher total column
soil wetness differences (in %) found with the DI runs.
With more snow removed and earlier in the DI experiments,
less snowmelt and liquid drainage through the soil column
occurs than with the EnKF experiments, affecting spring soil
moisture presence and potential atmospheric responses like
summer-time precipitation [e.g., Su et al., 2012].

5. Summary and Conclusions

[48] In this study, two different data assimilation methods
of varying complexity were applied and evaluated by assim-
ilating MODIS snow cover fraction observations in to the
CLM2 land surface model. The two DAmethods, the simpler
Rodell and Houser [2004] direct insertion approach and the
ensemble-based 1-D EnKF method [Reichle et al., 2002a,
2002b], were selected due to their wide usage in many
LSM data assimilation studies. In order to compare the two
methods, a bias correction to the EnKF's ensemble genera-
tion was required due to an underestimation of the resulting
snow variables' ensemble means. The ensemble bias correc-
tion was made using the approach by Ryu et al. [2009], which
was shown to improve the final snow state analysis and up-
dates, including reducing the differences in days of total
melt-off between the model analysis and observations.
Another major objective was to evaluate the two different
DA methods in terms of their impacts on the other LSM's
land state variables (e.g., soil moisture) and fluxes (e.g., la-
tent heat flux), in the melt period. In terms of overall impacts,
the EnKF method has less impact overall on CLM2's other
variables and fluxes than the DI method, including smaller
impacts on the hydrological budgets. These lower impacts
by the EnKF method could translate to smaller and less
shocking influences when coupled to an atmospheric model.
[49] Of the two methods, the EnKF method performs

slightly better overall at the higher elevation SNOTEL
points, and when accounting for ensemble biases, but the
DI method shows slight advantages at lower elevation
COOP sites in snowmelt timing and removal. Both tech-
niques show similar integrated hydrological budget errors
during the springtime melt. However, the DI experiments
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suffer from greater total snowpack removals but slightly less
hydrological budget errors due to the LSM system reverting
back to the hydrological budget of its nonsnowpack condi-
tions. For the EnKF method, smaller incremental springtime
snowpack reductions maintain a longer snow presence and
relate to lingering small budget errors, in part due to the high
temporal correlation persistence of such accumulated state
variables, which also renders the filter operations suboptimal.
[50] In summary, the EnKF experiments show smaller

changes than the DI experiments in energy fluxes and moisture
budget terms, like soil moisture and total runoff, when com-
pared to their control simulations. Even though MODIS SCF
observations are effective at reducing the snowpack biases in
CLM2, water mass is essentially being removed from the sys-
tem. These SWE reductions lead to snowmelt water and runoff
reductions that would eventually go into streamflow or evapo-
rative processes. Though this result may indicate a trade-off
for improving the snowpack state, removing excess snow
could account for forcing errors and biases as well. Other
sophisticated approaches exist for dealing with these model
imbalances due to the updates either using a priori knowledge
and daily bias-correcting approaches [e.g., Bosilovich et al.,
2007] or budget closure approaches built within the data
assimilation scheme itself [e.g., Yilmaz et al., 2011]. Finally,
both DA methods could be optimized further in terms of
how observations get assimilated and how the model and
forcing errors are accounted for. For example, reducing biases
between observations and model states a priori [e.g., Reichle
and Koster, 2004] or dynamically [e.g., De Lannoy et al.,
2007] could improve the performance of the filters.
[51] Though the twoDAmethods in this studywere evaluated

for higher-resolutions and midlatitudinal mountainous regions,
simpler methods, like DI, could still be considered for coarser-
scale and larger domain-based reanalysis data sets and opera-
tional forecasts. However, if model, ensemble, and observation
errors are well addressed and computing resources are not a con-
cern, methods like the EnKF are still recommended over the sim-
pler methods. Applying the more complex EnKF method does
allow researchers and forecasters the ability to adapt observation
and model errors for a variety of situations and better account
for bias impacts, which can be adapted for a range of hydrolog-
ical modeling and numerical weather prediction applications.
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